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In this paper, we investigate the rotational viscosity for a chlorine fluid and for a fluid composed of
small linear molecules by using equilibrium molecular dynamics simulations. The rotational
viscosity is calculated over a large range of state points. It is found that the rotational viscosity is
almost independent of temperature in the range studied here but exhibits a power-law dependency
on density. The rotational viscosity also shows a power-law relationship with the molecular length,
and the ratio between the shear and rotational viscosities approaches 0.5 for the longest molecule
studied here. By changing the number of atoms or united atomic units per molecule and by keeping
the molecule length fixed, we show that fluids composed of molecules which have a rodlike shape
have a lower rotational viscosity. We argue that this phenomenon is due to the reduction in
intermolecular connectivity, which leads to larger fluctuations around the values possessed by the
fluid on average. The conclusions here can be extended to fluids composed of uniaxial molecules of
arbitrary length. © 2008 American Institute of Physics. �DOI: 10.1063/1.2921135�

I. INTRODUCTION

Classical fluid dynamics is concerned with the spa-
tiotemporal behavior of fluid translational momentum, en-
ergy, and density. Fluid dynamics can successfully describe
many phenomena; however, in its classical formulation, it is
rather coarse grained in that many microscopic degrees of
freedom and their coupling to the macroscopic quantities are
ignored. It is well-known that for molecular fluids, the intrin-
sic angular momentum �or molecular spin� couples to the
fluid translational velocity.1–3 This coupling is ignored in the
classical fluid dynamics approach but should, at least in prin-
ciple, be included into the dynamical description.

For a fluid composed of uniaxial molecules, a thermody-
namical force arises if the angular velocity of the fluid �
does not resemble that of a rigid body4 where the following
is true,

2� = � � u , �1�

where u is the velocity field.1,5 The force, which is some-
times referred to as the sprain rate,5 will lead to a conjugated
flux through the linear constitutive relation1

P
d

= − �r�� � u − 2�� , �2�

where P
d

is the vector dual of the antisymmetric part of the
pressure tensor and �r is the rotational viscosity. Thus, the
rotational viscosity is a transport coefficient that describes
the decay of the antisymmetric stress after an infinitely small
perturbation away from the condition given in Eq. �1�. By
applying the constitutive relation �Eq. �2�� to the balance

equations, which also include an equation describing the dy-
namics of the intrinsic angular momentum, it can be shown
that the rotational viscosity also accounts for coupling be-
tween the angular velocity and the translational motion of the
fluid.1 For steady flows, e.g., a low Reynolds number Poi-
seuille flow, this coupling can be safely ignored.6 However,
for anisotropic fluids, e.g., nematic fluids7 and unsteady
flows,6 it can have a very large effect on the overall dynam-
ics of the system.

Since a complete dynamical description of a molecular
fluid includes the molecular spin, the rotational viscosity
must be evaluated alongside the other transport coefficients.
Some experimental methods have been advised,8 which use
rotating magnetic or electrical fields but are rather involved.
Evans and Hanley9 were the first to compute the rotational
viscosity of chlorine by using the solution to the generalized
Langevin equation and molecular dynamics �MD� simula-
tions. Edberg et al.5 and, more recently, Delhommelle10 have
also studied chlorine via MD and included the dependence of
the rotational viscosity on the intrinsic angular velocity.
Allen et al.11 have deduced analytical expressions for the
rotational viscosity for hard convex bodies. For nematic liq-
uid crystals composed of relatively large molecules with mo-
lecular weight in the order of 250 g /mol, Zakharov et al.12

and also Capar and Cebe13 have studied the rotational vis-
cosity as a function of temperature by using MD. To the best
of our knowledge, no one has yet published any systematic
study of the rotational viscosity as a function of density and
temperature and for different molecular fluids. It is the pur-
pose of this paper to do just that by using equilibrium MD
simulations where these parameters can be easily controlled.
We will only focus on fluids composed of small linear mol-
ecules comprising two to four atoms, or united atomic units
�UAUs�, where Eq. �2� applies. To keep this study as general
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as possible, we will allow small amplitude bond length and
bending angle vibrations and we shall limit ourselves to
study only two different molecular fluids, namely, chlorine
and a generic fluid where the number of UAUs per molecule
can be varied.

The paper is organized as follows. In the next section,
we present the molecular model and the details concerning
the MD simulations. In this section, we also show in detail
how the rotational viscosity is calculated based on the
method provided by Evans and Hanley.9 In Sec. III, the re-
sults from the simulations are presented and discussed, and
finally, we make a few concluding and perspective remarks.

II. METHODOLOGY

A. Molecular model and simulation details

We have chosen a linear molecular model that includes
pair potential interactions, bond stretching interactions be-
tween bonded UAU, as well as bending force interactions.
The total potential energy in the system can then be written
as

U = �
pairs

Up�rab� + �
bonds

Ub�rab� + �
angles

Ua��� . �3�

Here, rab is the absolute distance between UAUs a and b and
� is the angle between two bonds that are connected to the
same UAU. The first sum on the right hand side runs over all
pairs of UAUs that are not connected via a bond; i.e., two
bonded UAU only interact via the stretching potential. The
functional form of the potential governing the pair interac-
tions Up is of the Lennard-Jones type,

Up�rab� = �4��� �

rab
	12

− � �

rab
	6
 if rab � rc

0 otherwise,
� �4�

where, as stated above, UAUs a and b are not bonded and
can belong to the same or different molecule. � is a length
scale and � is an energy scale. For chlorine, for example, �
=3.332�10−10 m and �=2.462�10−21 J.14 We will use two
different values for the critical cutoff length rc. For chlorine,
we set rc=2.5�, and for the generic molecule, we use rc

=21/6�. In the latter case, the potential function is also
shifted upwards such that Up�rc�=0, which is the Weeks–
Chandler–Andersen �WCA� potential.15 For us to make a
comparison with previous work, we will leave the potential

unshifted for chlorine. The bond stretching potential is given
by a simple spring potential,

Ub�rab� = 1
2ks�rab − lbond�2, �5�

where ks is the spring constant and lbond is the mean �or
equilibrium� bond length. The bending potential used is that
typically applied for alkanes,16,17

Ua��� = 1
2k��cos��� − cos��0�� , �6�

where �0 is the equilibrium bending angle and k� is the bend-
ing constant.

A comment about the choice of model is in place. For
low weight molecules such as N2 and Cl2, the bond stretch-
ing interactions are typically not explicitly included due to
the high frequency vibrations and, therefore, long simulation
times. Furthermore, for very low weight molecules, e.g., H2,
the bond vibrations should also be treated as a quantum phe-
nomenon. In such cases, the bond length is kept fixed either
by solving Lagrangian equations of motion or by applying a
relaxation method.18 Here, we wish to study the general case
where the UAU may have a considerable mass and where the
bond vibrations should be included. There is also a compu-
tational benefit: we have found that using the SHAKE

algorithm18 to keep the bond fixed, with an error tolerance of
1�10−6�, increases the simulation time by around 12%
compared to including the bond interaction explicitly using a
time step that ensures the same standard error in energy con-
servation. It must, however, be stressed that one does not
obtain the same dynamics by simply letting ks→�,18 and it
is, therefore, important to investigate the possible effects of
varying ks. We shall comment on this later.

One can express any physical quantity in units of �, �,
and mass m. Thus, the temperature T can be expressed in
dimensionless �or reduced� units as T*=kBT /�, number den-
sity as �*=��3, time as t*= t / ���m /��, and so forth. Here,
kB is the Boltzmann constant. We will, as is common prac-
tice, for the remainder of the paper, express all quantities in
reduced units and drop the asterisk altogether.

The MD simulations were carried out in the NVE en-
semble after an equilibration period, where the system was
thermostated to a desired temperature. Throughout the simu-
lation, the equations of motion were integrated forward in
time by using a leap-frog integration scheme,19 with a time
step of 	t=0.001, and periodic boundary conditions were
used in all directions. The force calculations were performed
by implementing the potential functions using the algorithms
given in the works of Allen and Tildesley20 and Rapaport.17

The number of UAUs in the simulation box varied from 512
to 1728 depending on the molecular fluid simulated. It was
verified that the transport coefficients were not affected by
the system size within statistical uncertainty. For systems
where the number of UAUs per molecule NUAU was greater
than 2, the equilibrium bending angle was set such that �

, which stretches out the molecule and gives close to a
uniaxial shape. We will use k�=500 throughout the paper.

Two series of simulations were carried out. In the first,
the rotational viscosity of chlorine was calculated for differ-
ent state points. This enables a comparison of our data with
previously published values. The second series of simula-

TABLE I. Simulation parameters for Cl2. lmol is given by the end-to-end
distance of the molecules. The corresponding rotational temperature is Tr

=0.73�0.05

Cl2 molecules

Number of molecules 256
NUAU 2
lmol 0.63�0.03
L-J cutoff 2.5 �unshifted�
Temperature 0.96�0.03
UAU number density 1.088
Time step 0.001

224507-2 Moore, Hansen, and Todd J. Chem. Phys. 128, 224507 �2008�

Downloaded 22 Jun 2009 to 136.186.1.191. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



tions focused on the generic molecular fluid where the bond
length and NUAU are varied to study the effects these have on
the rotational viscosity.

B. Evaluation of the viscosities

The viscosities are evaluated by using the Green–Kubo
integral of the autocorrelation functions of the symmetric
and antisymmetric parts of the molecular pressure tensor.21

On a microscopic scale, the pressure tensor is defined as20

P =
1

V��
i

pipi

Mi
+ �

i
�
i�j

rijFij
 , �7�

where V is the system volume, pi is the momentum of the
center of mass of molecule i, Mi is the mass, and rij =ri−r j,
where ri and r j are the centers of mass of molecules i and j,
respectively. The force acting between molecules i and j, Fij,
is given by

Fij = �
a�i

�
b�j

Fab, �8�

where Fab is the force acting between UAU a in molecule i
and UAU b in j. The pressure tensor can be decomposed into

a traceless symmetric part P
os

and an antisymmetric part P
a

,
i.e.,

P = pl + P
os

+ P
a

. �9�

Here, p is the pressure given by the average of the trace of P,

p=tr�P� /3, P
os

= 1
2 �P+PT�− p, and P

a

= 1
2 �P−PT�. The zero fre-

quency zero wave vector shear viscosity is then directly
evaluated by using the standard Green–Kubo integral,22

�0 =
V

3kBT
�

0

���
�

P
os

��0�P
os

��t��dt , �10�

where we explicitly indicate the time dependence and �

runs over the xy, xz, and yz elements of P
os

.
The molecular spin angular momentum is a noncon-

served quantity, since only the total angular momentum is
conserved. This, in turn, means that the rotational viscosity
cannot be directly calculated from a Green–Kubo integral of

the autocorrelation function of P
a

.9 However, by solving the
generalized Langevin equation, the Laplace transform of the
rotational viscosity is given as9,23

�̃r�s� =
C̃r�s�

1 −
1

��

C̃r�s�
s

, �11�

where � is the average of the trace of the moment of inertia

tensor per unit mass and C̃r�s� is the Laplace transform of the

TABLE II. Simulation results for Cl2 at S1. Corroboratory results were
obtained by using rigid intramolecular bonds, whereas our results were ob-
tained with a bond stiffness ks=5000. The shear viscosity quoted from Matin
et al. �Ref. 14� has been extrapolated from their reported results. Our uncer-
tainties stated in this report are equal to the 95.4% confidence bounds ob-
tained from ten runs. Each run is averaged over 1000 samples.

P �0 �r

Matin et al.a 1.31 �7.0�0.5 ¯

Delhommelleb 1.29�0.1 ¯ 0.47�0.02
This work 1.21�0.56 6.71�0.55 0.42�0.03

aReference 14.
bReference 10.

FIG. 1. Autocorrelation function of the antisymmetric part of the pressure
tensor for Cl2 with ks=5000 as a function of time at S1. Note that the
autocorrelation function has decayed to approximately zero for t�0.5. The
inset shows the fluctuations around zero of the autocorrelation function for
later times.

FIG. 2. Fit of Eq. �14� �full line� applied to the Laplace transform of the MD
data given in Fig. 1 �circles�.

FIG. 3. Normalized shear and rotational viscosities as a function of bond
stiffness for Cl2 at S1. Viscosities are normalized by their maximum values
to highlight the similarities between the dependence of shear and rotational
viscosities on bond stiffness. The lines serve as a guide for the eyes.

224507-3 Rotational viscosity of fluids J. Chem. Phys. 128, 224507 �2008�

Downloaded 22 Jun 2009 to 136.186.1.191. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



autocorrelation function of the antisymmetric part of the

pressure tensor. We may write C̃r�s� as

C̃r�s� =
V

3kBT
�

0

�

�P
d

�0� · P
d

�t��e−stdt , �12�

where P
d

is the vector dual of P
a

, as mentioned in Sec. I, and

can be found by P
d

=� :P
a

, where � is the third order Levi–

Civita tensor. Due to the term C̃r�s� /s in the denominator of
Eq. �11�, the expression for �̃r�s� will lead to large numerical
uncertainties for small s. This has also been noted by Evans
and Hanley,9 and they have suggested the following func-
tional form for �̃r�s�:

�̃r�s� =
�̃r�0�
1 + s�

, �13�

where � is the relaxation time. By substituting Eq. �13� into

Eq. �11�, one obtains an expression for C̃r�s�,

C̃r�s� =
�̃r�0�s

s + s2� +
4

��
�̃r�0�

. �14�

Equation �14� can then be fitted to the Laplace transform of
the MD simulation data, which is given by Eq. �12�, by using
�̃r�0�, �, and � as fitting parameters. It must be stressed that
this is only valid as long as the assumption of Eq. �13� is
valid and is checked in the fitting procedure.

TABLE III. Summary of the lmol, �0, and �r data collected for Cl2 at T=1.5,3.0,4.5.

�

T=1.5 T=3.0 T=4.5

lmol �0 �r lmol �0 �r lmol �0 �r

0.44 0.62�0.01 0.30�0.07 0.05�0.00 0.64�0.01 0.48�0.19 0.03�0.01 0.65�0.01 0.60�0.14 0.03�0.00
0.52 0.63�0.01 0.48�0.09 0.06�0.00 0.65�0.01 0.69�0.17 0.04�0.01
0.60 0.63�0.01 0.63�0.10 0.07�0.00 0.64�0.01 0.72�0.14 0.06�0.01 0.65�0.01 0.85�0.09 0.06�0.00
0.68 0.63�0.01 0.82�0.14 0.09�0.00 0.64�0.01a 1.04�0.22a 0.09�0.01a 0.64�0.01 1.07�0.15 0.08�0.01
0.76 0.63�0.01 1.15�0.14 0.11�0.01 0.64�0.01 1.37�0.21 0.11�0.01
0.84 0.63�0.01 1.54�0.23 0.14�0.01 0.63�0.01b 1.40�0.29b 0.13�0.01b 0.63�0.01 1.69�0.22 0.14�0.01
0.92 0.62�0.01 2.11�0.23 0.19�0.00 0.62�0.01c 1.91�0.33c 0.19�0.02c 0.62�0.01 2.27�0.41 0.19�0.02
1.00 0.62�0.01 3.01�0.41 0.25�0.01 0.61�0.01 2.80�0.25 0.26�0.01 0.61�0.01 2.85�0.40 0.24�0.02
1.088 0.61�0.01 4.65�0.27 0.34�0.01 0.60�0.01 3.80�0.42 0.34�0.02 0.60�0.01 3.52�0.70 0.30�0.01
1.16 0.60�0.01 7.10�0.43 0.41�0.01 0.59�0.01 5.14�0.78 0.37�0.02 0.59�0.01 4.74�0.43 0.35�0.02

aData were collected at �=0.70.
bData were collected at �=0.80.
cData were collected at �=0.90.

FIG. 4. Log-log plot displaying shear and rotational viscosities as a function
of density for Cl2. This log-log plot shows a good power-law relationship
between �r and � at T=2.5. Similar relationships are found for all tempera-
tures. A power-law fit of the form �r���=a��b applied to the �r data yields
a=0.24 b=3.0. The ratio �r /�0 peaks at approximately 10% for �0.84.
The shear viscosity is found to follow a stretched exponential relationship
given in Eq. �20� in accordance with atomic fluids �Ref. 26�. Note that for
�r, the statistical uncertainty is smaller than the plotting symbol. Lines serve
as a guide for the eyes.

FIG. 5. Log-log plot displaying rotational viscosity as a function of density
for generic molecules of various molecular lengths with NUAU=2 and T
=2.5. A power-law fit of the form �r���=a��b has been applied to each
data set. The exponent b was found to be b=3.38�0.21, where the error has
been estimated as one half the difference between the maximum and mini-
mum values. The scalar a was found to be dependent on lmol.
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III. RESULTS

A. Preliminary and corroboratory simulations

The validity of the data generated by the MD simulation
program is first established by corroborating our results with
previously reported values. To this end, we define the center
of mass translational temperature T as24

T =
�iMivi

2

�3Nmol − 3�kB
, �15�

where Nmol is the number of molecules in the system and vi

is the velocity of the center of mass of molecule i. Some-
times, the rotational temperature is used and for complete-
ness, we include this10

Tr =
�iMi�i�i

2

2NmolkB
. �16�

Recall that �i is the angular velocity of molecule i and is
found by

�i =
si

�i
, �17�

where si is the angular momentum per unit mass and �i is
one-third the trace of the inertial tensor �i per unit mass. si

and �i are given by

si =
1

Mi
�
a�i

ra � pa, �18�

�i =
1

Mi
�
a�i

ma�ra
21 − rara� , �19�

where ra is the distance between UAU a in molecule i and
the center of mass and pa is the momentum of UAU a. It is
worth noting that since we have close to rigid uniaxial mol-
ecules, Eq. �17� is true and �i=2Ip /3, where Ip is the prin-
cipal moment of inertia. In general, the angular velocity must
be evaluated by solving the equation si=�i ·�i. The fact that
the molecules are �roughly� uniaxial also reduces the number
of rotational degrees of freedom to 2, hence, the factor of 2
in the denominator of Eq. �16�.

The chlorine state point given in Table I, and is hereafter
referred to as S1 �note that Delhommelle10 refers to this state
point as S2�, has been variously studied10,14 and is, therefore,
used for validating our method. To allow a comparison, the
molecular model for chlorine used in this work is similar to
that employed by Matin et al.14 and Delhommelle,10 al-
though we allow for bond vibrations as previously men-
tioned. Our methods for calculating �0 and �r were de-
scribed in Sec. II B. Figure 1 displays an autocorrelation
function of the antisymmetric part of the pressure tensor for
chlorine at S1 and ks as high as 5000. A fit of Eq. �14� to the
Laplace transformed MD data given in Fig. 1 is shown in
Fig. 2. It is seen that the ad hoc functional form suggested by
Evans and Hanley9 for �̃r�s� �Eq. �13�� is, indeed, suitable.
This was found to be the case for all fluids studied here.

FIG. 6. Rotational viscosity for generic diatomic molecular fluids normal-
ized against shear viscosity as a function of density for various molecular
lengths at T=2.5. Lines serve as a guide for the eyes.

FIG. 7. Log-log plot displaying rotational viscosity as a function of density
for generic molecules with lmol=1.8 and varying NUAU at T=2.5. A power-
law fit of the form �r���=a��b has been applied to each data set. The
exponent b was found to be b=3.27�0.05, where the error has been esti-
mated as one half the difference between the maximum and minimum val-
ues. The scalar a was found to be dependent on NUAU. Not enough data are
available to generate a fit for NUAU=2, however, the available data are
shown.

FIG. 8. Log-log plot displaying rotational viscosity as a function of molecu-
lar length at a density of 0.56 and T=2.5 for generic molecules with various
NUAU. A power-law fit of the form �r�lmol�=a� lmol

b has been applied to each
data set. The exponent b was found to be b=3.29�0.06, where the error has
been estimated as one half the difference between the maximum and mini-
mum values. The scalar a was found to be dependent on NUAU. The data
points for NUAU=2 at lmol=1.5,1.8 are beyond the reasonable limits for lmol

and have not been included in the fit.
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Figure 3 shows the effect of varying ks on �0 and �r for
chlorine at S1, where both viscosities are normalized with
respect to their maximum values. Both the shear and rota-
tional viscosities asymptotically increase to a maximum
value as the stiffness of the molecules is increased. Similar
results are observed for the pressure p. The results for

chlorine at S1 with ks=5000 are summarized in Table II
along with previously reported values for fixed bond lengths.
The values for p, �0, and �r are all in good agreement with
previously published data; i.e., for sufficiently large ks, the
viscous properties in the fluid are the same as those com-
posed of completely rigid bonded molecules. For model

TABLE IV. Summary of the lmol, �0, and �r data collected for generic molecules with NUAU=2,3 ,4 at T=2.5.

�

NUAU=2 NUAU=3 NUAU=4

lmol �0 �r lmol �0 �r lmol �0 �r

0.48 0.64�0.01 0.47�0.13 0.02�0.01 1.26�0.01 0.43�0.06 0.06�0.00 1.80�0.01 0.42�0.06 0.09�0.01
0.81�0.01 0.51�0.09 0.05�0.01 1.78�0.01 0.56�0.08 0.18�0.02 2.36�0.01 0.56�0.12 0.22�0.01
1.00�0.01 0.57�0.10 0.10�0.01 1.98�0.01 0.65�0.08 0.26�0.01 2.93�0.01 0.84�0.12 0.45�0.02
1.26�0.01 0.68�0.18 0.20�0.02 2.49�0.01 0.96�0.11 0.53�0.02 3.69�0.01 1.26�0.22 0.97�0.06
1.51�0.01 0.76�0.10 0.32�0.03
1.81�0.01 0.83�0.12 0.45�0.04

0.56 0.64�0.01 0.61�0.14 0.03�0.01 1.26�0.01 0.54�0.09 0.09�0.01 1.79�0.01 0.54�0.10 0.14�0.01
0.80�0.01 0.65�0.11 0.07�0.01 1.78�0.01 0.80�0.13 0.28�0.02 2.35�0.01 0.77�0.12 0.34�0.02
1.00�0.01 0.81�0.09 0.15�0.01 1.97�0.01 0.93�0.17 0.40�0.02 2.93�0.01 1.20�0.20 0.72�0.04
1.26�0.01 0.96�0.15 0.32�0.03 2.49�0.01 1.44�0.16 0.85�0.04 3.67�0.01 2.00�0.33 1.54�0.06
1.50�0.01 1.09�0.20 0.49�0.05
1.81�0.01 1.24�0.17 0.69�0.05

0.64 0.64�0.01 0.73�0.13 0.05�0.01 1.26�0.01 0.71�0.11 0.13�0.02 1.79�0.01 0.70�0.07 0.20�0.01
0.80�0.01 0.92�0.15 0.11�0.01 1.77�0.01 1.18�0.11 0.43�0.03 2.34�0.01 1.06�0.16 0.50�0.02
1.00�0.01 1.11�0.15 0.24�0.02 1.97�0.01 1.42�0.19 0.61�0.03 2.92�0.01 1.69�0.19 1.10�0.06
1.26�0.01 1.27�0.13 0.47�0.02 2.48�0.01 2.25�0.28 1.29�0.06 3.68�0.01 2.86�0.61 2.33�0.11
1.50�0.01 1.61�0.16 0.74�0.04

0.72 0.63�0.01 0.94�0.16 0.07�0.01 1.25�0.01 0.89�0.15 0.19�0.02 1.78�0.01 0.86�0.07 0.28�0.02
0.80�0.01 1.20�0.15 0.17�0.01 1.77�0.01 1.60�0.17 0.62�0.05 2.33�0.01 1.55�0.13 0.73�0.03
1.00�0.01 1.48�0.21 0.35�0.02 1.96�0.01 2.03�0.23 0.90�0.05 2.91�0.01 2.43�0.36 1.59�0.06
1.26�0.01 2.10�0.33 0.72�0.05 2.48�0.01 3.40�0.33 1.87�0.04 3.68�0.01 4.62�0.46 3.43�0.11
1.51�0.01 2.39�0.35 1.09�0.09

0.80 0.63�0.01 1.27�0.22 0.10�0.01 1.25�0.01 1.19�0.11 0.26�0.01 1.77�0.01 1.22�0.15 0.39�0.02
0.79�0.01 1.52�0.16 0.23�0.01 1.76�0.01 2.38�0.41 0.89�0.04 2.32�0.01 2.11�0.29 1.02�0.04
0.99�0.01 2.12�0.55 0.51�0.06 1.95�0.01 3.13�0.41 1.29�0.05 2.90�0.01 3.68�0.41 2.28�0.06
1.26�0.01 2.84�0.37 1.03�0.06 2.47�0.01 5.30�0.48 2.67�0.07
1.51�0.01 3.41�0.50 0.50�0.10

0.88 0.62�0.01 1.67�0.21 0.14�0.01 1.24�0.01 1.66�0.32 0.36�0.02 1.77�0.01 1.60�0.22 0.53�0.01
0.79�0.01 2.23�0.40 0.32�0.02 1.75�0.01 3.51�0.35 1.24�0.07 2.31�0.01 2.98�0.50 1.38�0.05
0.99�0.01 2.97�0.41 0.69�0.05 1.94�0.01 4.63�0.33 1.78�0.06 2.88�0.01 5.69�0.74 3.12�0.11
1.25�0.01 4.36�0.59 1.43�0.07 2.47�0.01 8.83�1.09 3.65�0.12
1.51�0.01 5.31�0.68 2.05�0.14

0.96 0.62�0.01 2.22�0.42 0.19�0.01 1.23�0.01 2.32�0.36 0.47�0.04 1.76�0.01 2.20�0.24 0.70�0.03
0.78�0.01 3.17�0.30 0.45�0.02 1.73�0.01 5.23�0.40 1.66�0.08 2.29�0.01 4.13�0.68 1.85�0.05
0.98�0.01 4.62�0.57 0.96�0.06 1.93�0.01 7.30�1.06 2.43�0.08 2.86�0.01 9.80�1.10 4.17�0.15
1.25�0.01 7.06�0.85 1.95�0.11

1.04 0.61�0.01 3.03�0.55 0.26�0.02 1.22�0.01 3.00�0.27 0.62�0.03 1.74�0.01 2.88�0.36 0.92�0.03
0.77�0.01 4.41�0.75 0.59�0.04 1.72�0.01 7.85�0.57 2.14�0.10 2.27�0.01 5.84�0.98 2.39�0.12
0.97�0.01 7.17�0.54 1.29�0.04 1.92�0.01 12.9�1.63 3.16�0.07
1.25�0.01 12.5�1.58 2.56�0.12

1.12 0.60�0.01 4.11�0.53 0.32�0.03
0.96�0.01 12.0�1.33 1.70�0.14

1.20 0.59�0.01 6.03�0.90 0.40�0.02
0.95�0.01 20.9�1.71 2.15�0.13
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polymer melts, it has also been reported that the shear vis-
cosity and self-diffusivity is almost independent of whether
the bond is flexible or rigid;25 i.e., the transport properties are
only very slightly affected by the choice of molecular model.
From Fig. 3, it can be seen that �0 and �r similarly behave
with respect to ks and, hence, the ratio �r /�0 is roughly
preserved for all values of ks. We will, therefore, use ks

=500 throughout the remainder of this paper.

B. Rotational viscosities for different fluids at different
state points

To examine the dependence of rotational viscosity on
temperature and density, �r was evaluated at different state
points. Relatively high temperatures were used for the simu-
lations to avoid any possible phase transitions for chlorine at
high densities. It is expected that both the shear and rota-
tional viscosities vary with varying temperature, and for tem-
peratures below T1.5, this is observed. However, for the
region of interest, 1.5�T�4.5 corresponding to 1.1�Tr

�3.4, both �0 and �r show very little dependence on tem-
perature �see Table III�. For example, at a density �=0.76
and temperature T=1.5, �0=1.15�0.14 and �r

=0.11�0.01; at the same density and a temperature T=4.0,
�0=1.30�0.22 and �r=0.11�0.01. The viscosities’ density
dependence is much more evident. Figure 4 shows a strong
power-law dependence that exists between �r and � for
0.44���1.16. A stronger dependence is evident for �0 over
the same range of densities. In fact, we have successfully
fitted the data for �0 to a stretched exponential function,

�0 = ke��/�, �20�

where k, �, and � are fitting parameters. For chlorine at T
=1.5, we obtain k=0.22, �=0.38, and �=1.83, with an error
sum of squares �SSE� of 2.31�10−2. The stretched exponen-
tial relationship between density and shear viscosity has pre-
viously been found by Todd26 for simple atomic fluids. It is
interesting to note that the stronger than power-law relation-
ship between �0 and � causes the ratio �r /�0 to peak at
approximately 10% for �0.84. This result is relatively tem-
perature independent because both �0 and �r were found to
be independent of T for 1.5�T�4.5.

Figure 5 shows the relationship between �r and � for
generic diatomic molecules of various molecular lengths lmol.
As with chlorine, a very good power-law relationship exists
between rotational viscosity and density. The exponent b was
found to be approximately constant for all data sets with b
=3.38�0.21. This value is similar to the slope of the fit
applied to chlorine in Fig. 4, which was found to be b=3.0,
indicating that b is only slightly dependent on the molecular
details. For a generic molecule with lmol=0.63, the scalar a
was found to be a=0.22 with an SSE of 7.04�10−5, which
correlates well with the result for chlorine: a=0.24 �SSE
=1.64�10−4�. From Fig. 5, it is also seen that the scalar a is
dependent on the molecular length; i.e., the larger the value
of lmol is, the larger the rotational viscosity is. Thus, the
affinity to fulfill Eq. �1� increases with increasing density and
molecular length, which is expected.

It is known from the results for chlorine that the shear
viscosity has a stretched exponential relationship with den-
sity �Eq. �20�� and, therefore, the ratio �r /�0 is not constant
in the density interval studied here. In fact, Eq. �20� also fits
the generic molecular fluid and it is, therefore, not surprising
to see the same result for �r /�0 for the generic molecular
fluid with NUAU=2 �Fig. 6�. However, it can be seen that for
larger molecular lengths, the fraction �r /�0 becomes mark-
edly more pronounced. For a fluid composed of generic di-
atomic molecules with lmol=1.5, �r /�0 approaches 50% for
�0.64. This is significantly more than the maximum value
of �r /�0 for a generic diatomic molecule with lmol=0.63
�9%�. This means that �r increases more rapidly than �0 as a
function of lmol. Figure 6 also indicates that the shear viscos-
ity tends to dramatically increase for extreme densities, caus-
ing �r /�0 to decrease fast in this region.

Above, it was shown that the rotational viscosity of a
fluid composed of molecules with NUAU=2 is dependent on
the density of the fluid via a power-law relationship. The
next step is to investigate how this relationship varies for
larger generic molecules. The effects of intramolecular tor-
sion are neglected since our molecular bending angle is ap-
proximately 2.83�0.39 rad. Figure 7 shows the relationship
between �r and � for generic molecules with various NUAU

but constant molecular length �lmol=1.8�. The power-law fits
applied to the data yield b=3.27�0.05, which is empirically
similar to the slope of the fits found for generic molecules
with NUAU=2, as would be expected. However, as can be
seen from Fig. 7, increasing NUAU decreases the value of �r.
This phenomenon may be explained by considering the ex-
cluded volume. For constant lmol, as NUAU is increased, the
volume excluded by a molecule along its axis increases and
becomes more rodlike than barbell shaped compared to mol-
ecules where NUAU=2. This reduces the degree of the inter-
molecular connectivity with neighboring molecules, thereby
allowing the molecule to be more unrestrained. This, in turn,
enables the molecules to deviate from Eq. �1�, �u=2�, a
condition that the fluid will possess on average. Or differ-
ently stated: Any small fluctuation that will perturb a fluid
element away from Eq. �1� will more slowly decay if the
intermolecular connectivity is small �since the surrounding
fluid on average fulfills the rigid body condition�. Thus, a
decrease in �r is observed.

It is apparent from Figs. 5 and 7 that �r depends on � via
a power-law relationship with a constant exponent b3.32
�derived from the averages of 3.38�0.21 and 3.27�0.05�,
for generic molecules of all lengths �lmol�1.5� and sizes
�NUAU�4�. It is only the amplitude of this relationship �vis-
ible as the vertical offset in Figs. 5 and 7� that depends on
lmol and NUAU. To further investigate and quantify this rela-
tionship, the value of �r at �=0.56 for each of the generic
molecules considered is plotted in Fig. 8. Of most interest in
this plot is the relationship between �r and lmol. It was pre-
viously found that the amplitude of the function �r��� was
dependent on lmol. As can be seen in Fig. 8, this dependency
itself actually takes the form of a power-law relationship.
The exponent in the power-law relationship �r�lmol� is b
=3.29�0.06. This is remarkably similar to the exponent for
�r���, which was found to be b3.32. However, increasing
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the density of a fluid is similar in effect to increasing the
excluded volume of the participating molecules so it should
not be so surprising, perhaps, that the two relationships
��r��� and �r�lmol�� are empirically so similar. We have sum-
marized the plotted data in Appendix A.

IV. CONCLUSION

We have successfully used the functional form for �̃r�s�
�Eq. �13�� suggested by Evans and Hanley9 and equilibrium
MD simulations to perform a systematic study of the rota-
tional viscosity for different linear molecular fluids as a func-
tion of temperature and density. Our study encompasses
chlorine and a generic uniaxial molecule where our molecu-
lar model includes intramolecular interaction, bond stretch-
ing between adjacent UAU, and bending force. Where com-
parisons are possible, our results agree with previously
published results.

We have found that both the shear and rotational viscosi-
ties of chlorine are roughly independent of temperature in the
interval of 1.5�T�4.5 and that the rotational viscosity of
chlorine depends on the density via a power-law relationship
with scalar a=0.24 and exponent b=3.0. From these results,
the rotational viscosity of chlorine may be accurately pre-
dicted for all temperatures of 1.5�T�4.5 and densities in
the interval of 0.44���1.16. It was also found that the
ratio �r /�0 did not exceed 10%.

By adopting a generic molecular model, where both lmol

and NUAU can be varied, we were also able to investigate the
effect of molecular structure on the rotational viscosity of
simple linear molecular fluids. We have found that the rota-
tional viscosity of fluids composed of diatomic molecules of
all sizes �lmol�1.5� follows a power-law relationship with
respect to density. This result is in agreement with our result
for chlorine. However, we have also found that the rotational
viscosity of molecular fluids also follows a power-law rela-
tionship with respect to molecular length. Thus, the affinity
of a molecular fluid to fulfill Eq. �1� increases with increas-
ing density and molecular length, which is expected. Finally,
we found that increasing NUAU, for a constant lmol, decreased
the rotational viscosity. It is proposed that this result is due to
the reduction in the intermolecular connectivity, thereby al-
lowing the molecule to more freely deviate from Eq. �1�. It is
our opinion that these conclusions can be extended to fluids
composed of uniaxial molecules of arbitrary length.

Additional information can be obtained by comparing
the data presented here with predictions from kinetic theory.

For example, the contribution from the uncorrelated colli-
sions could be extracted this way. As mentioned in the Intro-
duction, Allen et al.11 give the kinetic theory expression for
�r in the case where the fluid is composed of convex bodies.
However, before a comparison with the present data can be
made, expressions for the correct molecular geometries must
first be elucidated.

APPENDIX A: DENSITY AND MOLECULAR LENGTH
DEPENDENCE FOR THE GENERIC FLUID

Table IV summarizes the density and molecular depen-
dence for the generic fluid.
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